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Abstract. We present results from molecular dynamics simulations of the thermal glass transition
in a dense polymer melt. In previous work we compared the simulation data with the idealized
version of mode-coupling theory (MCT) and found that the theory provides a good description of
the dynamics above the dynamical critical temperature. In order to investigate the influence of
different thermodynamic paths on the structural relaxation (α-process), we performed simulations
for three different pressures and are thus able to give a sketch of the critical line of MCT in
the pressure–temperature plane, where, according to the idealized version of MCT, an ergodic–
nonergodic transition should occur. Furthermore, by cooling our system along two different paths
(an isobar and an isochor), with the same intersection point of the critical line, we demonstrate that
neither the dynamical critical temperature nor the exponentγ depend on which path is chosen.

1. Introduction

The understanding of the glass transition has been a long-standing problem of condensed
matter physics and materials science [1–4]. The termglass transitionis used to describe a
phenomenon where a solidification of a liquid without simultaneous crystallization occurs.
In a narrow temperature region, the viscosity of the material increases by some 14 orders of
magnitude, while no significant change in the structure is observed and the material remains
amorphous.

Experimental research in this field has been conducted for more than a hundred years
[1,5]. Since then a large number of phenomenological theories have been proposed, such as the
free-volume theory [6–8] and the Gibbs–Di Marzio theory [9–12], to explain the characteristic
features of the glass transition. These theories mainly deal with thermodynamic properties
and the Vogel–Fulcher law [1] for the temperature dependence of the viscosity, i.e., with the
behaviour at low temperatures close to the temperature of seeming divergence of the viscosity.
However, an explicit relationship between the model parameters and the microscopic properties
of the glass former remained hard to establish, and a detailed description of the shape of the
dynamic correlation functions was not attempted.

In recent years, mode-coupling theory (MCT) was successful in describing a broad range
of features observed in experiments [13–17] and simulations [18–26] (also see [27] for an
overview) in a temperature region close to a so-called dynamical critical temperatureTc, which
in general lies above the empirically defined glass transition temperatureTg. This dynamical
critical temperature is approximately equal to the temperature of the strong bend in the graph
of viscosity against temperature for fragile liquids and is associated with a change in dynamics
from a liquid-like to a solid-like behaviour. This theory starts from well known microscopic
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dynamics and uses techniques already applied in the field of critical dynamics to derive a set of
dynamic equations for the density correlation functions of the system [28–31] (also see [32,33]
for review articles). In real systems, with the probable exception of some colloidal glasses [14],
activated processes neglected in the idealized version of the theory restore the ergodicity below
Tc also.

Although MCT has been applied to experimental data numerous times, many aspects
of the theory still remain to be thoroughly investigated. Little is known on the influence of
external thermodynamic parameters on the transition temperature (although see [34–37]) or the
α-process. Since in general higher pressure causes higher densities, which in turn means that
the movement of an individual particle is more hindered, an increase in pressure results in an
increase of the glass transition temperature [4]. Hence, it is possible to cause a glass transition
solely by increasing the pressure, which indeed has been observed in experiment [37].

In general the thermodynamic parameter space (for instance, the(p, T ) plane) should
decompose into two areas, a fluid phase and an ideal-glass phase, separated by a critical
line at which the transition to nonergodicity should occur. Since MCT applies to systems in
thermodynamic equilibrium, the position of the critical line should be independent of the
thermodynamic path chosen for the cooling. Furthermore, close to the critical line, the
exponents of the theory, which determine most of the quantitative behaviour of the glass
former, depend solely on the intersection point of the thermodynamic path with the critical
line, provided that one does not choose too exotic a path, e.g. one that runs almost parallel to the
critical line. Therefore two different thermodynamic paths, which have the same intersection
point with the critical line, should not only yield the same critical temperature, but also the
quantitative behaviour of the systems, described in terms of MCT, should be the same along
both of them. To our knowledge, so far this prediction has never been verified.

Thus, we decided to study the influence of pressure on the parameters of the ideal
MCT. To this end, we chose a model for a glass-forming polymer melt which has been used
previously [26]. Clearly, because of the connectivity of the monomers along the chain, our
model is by no means a simple liquid, and therefore certainly not the kind of system for which
ideal MCT was originally developed. On the other hand, polymers, according to Angell’s
classification scheme [38], mostly belong to the group of fragile glass formers, to which MCT
has been applied successfully, and are extremely good glass formers, i.e. ‘supercooled’ melts in
thermal equilibrium can be prepared very well. In previous work [26] it was demonstrated that
it is possible to equilibrate our model well in the regime of the supercooled melt, a prerequisite
for applying MCT, and that theα-relaxation behaviour is compatible with MCT. By simulating
the system in the isochoric (NVT -) as well as in the isobaric (NpT -) ensemble, we try to test the
prediction of thermodynamic path independence in the present paper. To this end, we cooled
our system along an isochoric path which shared its intersection point with the critical line
with one of the isobaric paths. As in our earlier work [26], we concentrate on theα-relaxation
behaviour in this study. An analysis of theβ-relaxation can be found in reference [39].

The remainder of the paper is organized as follows. In section 2 we briefly describe our
model and the simulation technique. By performing simulations along different isobars we
were able to investigate the influence of pressure on the dynamical critical temperature. The
results of these simulations will be discussed in section 3. In section 4 we will perform a test
of the thermodynamic path independence and in section 5 conclusions will be drawn.

2. The model and simulation technique

For modelling the inter- and intramolecular forces we used a bead–spring model derived from
the one suggested by Kremer and Grest [40] and also used in several recent simulations [41,42].
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However, here we included also the attractive part of the Lennard-Jones potential, since
previous work on a lattice model for a glassy polymer melt [43, 44] had shown that without
such an attraction a negative thermal expansion coefficient would result. The model of Kremer
and co-workers [40–42] is close to an athermal model of polymer melts and hence does not
exhibit a glass transition driven by temperature at all.

As in our past simulations, each chain consisted of ten beads with massm set to unity.
Although these chains are rather short, they already show the static behaviour characteristic
of long polymers in the melt (e.g. Gaussian statistics for the end-to-end-distance distribution,
a Debye scattering law for the single-chain structure factor, etc). Note that each bond in this
model would correspond ton ≈ 3–6 covalent bonds along the backbone of a real chain, if
one were to map this coarse-grained model onto a real polymer. Between all monomers there
acted a truncated Lennard-Jones potential:

ULJ(rij ) =

 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

+C rij < 2 · 21/6σ

0 rij > 2 · 21/6σ

(1)

whereC was a constant which guaranteed that the potential was continuous everywhere. Since
it was not our aim to simulate a specific polymer, we used Lennard-Jones units, whereε and
σ are set to unity. Note that this means that all quantities are dimensionless. In addition to the
Lennard-Jones potential, a FENE backbone potential was applied along the chain:

UF(rij ) = −k
2
R2

0 ln

[
1−

(
rij

R0

)2
]
. (2)

The parameters of the potential were taken ask = 30 andR0 = 1.5, guaranteeing a certain
stiffness of the bonds while avoiding high-frequency modes and chain crossing. Furthermore,
with these parameters we set the favoured bond length to a value slightly smaller than the length
favoured by the Lennard-Jones potential. Thus we introduced two different incompatible length
scales in our system, which prevents the emergence of long-range order (i.e. crystal formation)
at lower temperatures.

Unlike previous lattice models for the thermally driven glass transition of polymers
[43, 44], the present model has a qualitatively reasonable equation of state with a positive
thermal expansion coefficient, and can easily be studied at constant density or constant pressure.
It allows us to study motion and structure from local scales (motions in the neighbour cage)
up to large scales.

In order to keep the temperature fixed, all simulations were performed using a Nosé–
Hoover thermostat [45–47]. In this technique the model system is coupled to a heat bath, which
represents an additional degree of freedom. To set the system to a desired pressure, the size of
the simulation box was adjusted to yield the correct density at each temperature. The resulting
configurations were used as start configurations for runs in the canonical ensemble, where the
size of the simulation box was kept fixed. Only during these canonical runs were dynamic
correlation functions for use in further analysis calculated. A more thorough discussion of the
simulation technique applied can be found elsewhere [26, 48]. Here we only emphasize that
we have carefully checked that the Nosé–Hoover thermostat does not lead to any artefacts in
the dynamics of the single-chain correlators and local properties that were studied here [48].
Note also that our chain lengthN = 10 was short enough that our results are not affected at
all by chain entanglement effects.

Altogether, we performed simulations at more than 40 different points in the thermo-
dynamic phase space. At each point, ten independent configurations were simulated, each
consisting of 120 polymer chains of ten monomers. In this way, we were able to perform
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Table 1. The table shows at which temperatures and densities or pressures the simulations were
performed.

Ensemble Simulation temperatures

Isochor (ρ = 1.042) 0.5, 0.52, 0.55, 0.58, 0.6, 0.65, 0.7, 0.8, 0.9, 1.0, 2.0

Isobar (p = 0.5) 0.45, 0.48, 0.5, 0.52, 0.55, 0.6, 0.7, 1.0
Isobar (p = 1.0) 0.46, 0.47, 0.48, 0.49, 0.5, 0.52, 0.55, 0.6, 0.65, 0.7, 1.0, 2.0, 4.0
Isobar (p = 2.0) 0.52, 0.55, 0.57, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0

simulations along three isobars and one isochor. Table 1 shows for which temperatures simul-
ations were made and in which ensemble.

In order to equilibrate an individual system at lower temperatures, one had to simulate for
very long times (>106 MD steps). Generally, the equilibration of the lowest temperature in
a given ensemble lasted as long as the sum of all equilibration times at higher temperatures
for the same ensemble. Altogether, the simulations consumed an equivalent of approximately
10 CPU years on a Pentium Pro® processor run at 180 MHz.

3. Dynamical properties at different pressures

As already discussed in the opening paragraph, the glass transition manifests itself by a steep
increase of the relaxation times. In order to extract these timescales from the simulation data,
we computed a number of dynamical quantities, like the incoherent intermediate dynamic
structure factor:

φs
q(t) =

〈
1

M

M∑
i=1

eiq·(ri (t)−ri (0))
〉

(3)

whereM stands for the total number of monomers in the melt. This function measures the
self-correlation of the particle positions at different times and, on varying the wave-vectorq,
at different length scales.

Recently, orientational degrees of freedom and their relaxational behaviour have become
a focus of theoretical research on the glass transition [49,50]. Results of molecular dynamics
simulations for a fluid consisting of diatomic molecules [22–24] illustrated that there can be
significant differences between orientational and translational relaxation. Such differences are
also observed in experiments (see reference [55], for instance). Clearly, it should be interesting
to check whether we could find any differences between orientational and translational
relaxation in our model. Hence, we also calculated the orientational correlation of the end-to-
end vector:

En(t) ≡
〈
Ln

(
e(t) · e(0)
||e(t)|| ||e(0)||

)〉
n = 1, 2, . . . (4)

whereLn stands for thenth Legendre polynomial,e(t) is the end-to-end vector of a polymer
at timet and||e|| is the length of the end-to-end vector at timet . The same formula can be
applied to measure the dynamical correlation of a bond vectorb(t):

Bn(t) ≡
〈
Ln

(
b(t) · b(0)
||b(t)|| ||b(0)||

)〉
n = 1, 2, . . .. (5)

Equations (4) and (5) characterize the reorientation dynamics of the largest and of the smallest
vectors along the backbone of a chain. In the analysis, we only calculated the first and second
polynomial, since these quantities can be measured by dielectric relaxation and light scattering,
respectively.
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With these three dynamical correlation functions we define the following correlation times:

φs
q(τq) = 0.3 En(τEn) = 0.3 Bn(τBn) = 0.3. (6)

The value of 0.3 is chosen for convenience and our conclusions do not depend on a variation of
this value within a reasonable range (1/e, 0.5). We have computed a number of other related
quantities as well, such as the Rouse modes of the system and the mean square displacements,
which are discussed in other publications [26,39,56].

3.1. The behaviour of dynamical correlators

As shown in figure 1 and figure 2, the correlators decay in one step at high temperatures, while
at lower temperatures a two-step process starts to emerge, which becomes more pronounced
as the temperature becomes lower. The emergence of a plateau in the decay is related to the
cage effect [29], where an individual monomer is trapped by its surrounding particles. The
average time that a monomer needs to escape from the cage of its neighbours increases with
decreasing temperature, which explains the extension of the plateau. The presence of a two-
step relaxation, the so-calledβ-relaxation (onto and off the plateau) andα-relaxation (off the
plateau and long-time structural relaxation), is a common feature of glass formers, and is also
predicted by MCT.
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Figure 1. Intermediate dynamic structure factors at the
first maximum of the static structure factor (q = 6.9) [39]
measured along the isobarp = 0.5. The broken line
shows the value which we used to define theα-relaxation
timescale. From left to right the temperatures decrease,
as specified in table 1.

Figure 2. Dynamic correlation functions of the orient-
ation of the bond vectors (the second Legendre poly-
nomial; see equation (5)) forp = 2.0. From left to
right the temperatures decrease, as specified in table 1.

The qualitative behaviour is not affected by the applied pressure (we therefore only show
the behaviour forp = 0.5 in figure 1), although at higher pressure the two-step process already
starts to appear at higher temperatures. Furthermore, while the height of the plateau depends
on the specific correlator, it hardly varies with pressure. The orientational correlators (first and
second Legendre polynomials; see equations (4) and (5)) exhibit a rather high plateau value
which is often close to unity (the plateau of the first Legendre polynomial is always larger
than that of the second). Therefore the two-step process is only visible on magnification.
Clearly, the contribution of theα-process to the overall relaxation of a correlator depends on
the quantity considered.
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Another characteristic of glass-forming liquids is that close to the dynamical critical
temperature the time–temperature superposition principle should hold for theα-relaxation.
One therefore has to rescale a dynamical correlator with respect to a suitably definedα-
relaxation time and to check whether the curves fall on a master curve in theα-regime. As
we reported in our earlier work forp = 1 (and constant volume) [26], this is indeed the
case. Here, we additionally observe that our data also obey a time–temperature–pressure
superposition principle, i.e., in theα-regime, data taken from different isobars collapse onto
a single master curve. This is illustrated for the incoherent scattering function and the second
Legendre polynomial of the bond-vector autocorrelation function in figure 3, where fourteen
different curves are included in one plot. The fact, that we observe this time–temperature–
pressure scaling also means that the stretching exponent in the Kohlrausch–Williams–Watts
law, which one can fit to theα-decay, would not depend on pressure in the range of pressures
that we studied. Similar behaviour has been observed in experiments on orthoterphenyl [36],
but, to the best of our knowledge, this is the first report from computer simulations for such a
behaviour.
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Figure 3. Panel (a) is a compilation of the results for the intermediate-scattering function, but
with times scaled with respect to theα-relaxation timescale for selected temperatures close to the
critical temperature at the respective pressure:T = 0.45, 0.48, 0.5, 0.52, 0.55 forp = 0.5 (dashed
curves),T = 0.46, 0.47, 0.48, 0.5, 0.52 for p = 1 (solid curves) andT = 0.52, 0.55, 0.57, 0.6
for p = 2 (dotted curves). In theα-regime the curves for different temperatures and pressures
all collapse onto a single master curve, demonstrating time–temperature–pressure superposition.
Panel (b) shows the same behaviour for the orientational correlation functionB2(t) (the second
Legendre polynomial) of the bonds.

3.2. The behaviour of the relaxation times

Figures 1 and 2 show that on lowering the temperature an increase of the relaxation times by
several orders of magnitude takes place, as expected for a glass-forming liquid. The idealized
MCT predicts that sufficiently close toTc the increase of theα-relaxation times can be described
by the following formula:

τ = τ 0(T − Tc)−γ (7)

whereτ 0 is an amplitude which depends on the specific relaxation time considered, andγ is a
parameter of the theory which should be the same for all correlation times, if the corresponding
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correlator couples to density fluctuations. Furthermore, our analysis of theβ-regime suggested
thatγ should take the value ofγ = 2.09 for the isobarp = 1.0 [39].
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Figure 4. Mode-coupling critical temperatures
at different pressures. The critical temperatures
represent averages which are derived by fitting
equation (7) to all relaxation times shown in
figure 5. The broken curve is an illustration of
the critical line of MCT (a guide to the eye only),
while the arrow symbolizes a thermodynamic
path at constant density.

Table 2. Critical temperatures and densities, and the soft-sphere scaling variable at the critical
point.

p Tc ρc ρcT
−1/4
c

0.5 0.425± 0.010 1.035± 0.01 1.28± 0.02
1.0 0.450± 0.005 1.042± 0.01 1.27± 0.02
2.0 0.490± 0.010 1.054± 0.01 1.26± 0.02

At all pressures investigated, it is indeed possible to locate a temperature interval where the
increase of the relaxation times can be described by equation (7). When applying equation (7),
τ 0, Tc andγ were treated as adjustable parameters. Although it is not incompatible with MCT
for rotational and translational degrees of freedom to freeze at different state points in the
temperature–density plane, as was demonstrated in recent publications [49, 50], our analysis
suggests that it is possible to find a dynamical critical temperature for all isobaric paths which
is independent of the specific correlator and solely a function of the pressure considered. The
critical temperatures and densities obtained are listed in table 2. Note that the error for the
critical temperature forp = 1.0 is smaller than for the other pressures because simulations for
a larger number of temperatures were carried out for this isobar. The pressure dependence of
the dynamical critical temperature is depicted in figure 4. As expected, the critical temperature
increases with increasing pressure as was also calculated for Lennard-Jones models in [34].
As one can also see from table 2, within the error bars the quantityρcT

−1/4
c is a constant

at the mode-coupling critical point, as was also found experimentally in e.g. [37] and in the
simulation of soft-sphere models [51–53] and for Lennard-Jones mixtures [54]. The value that
we found is, within the error bars, identical to the Lennard-Jones value given in [54].

Figure 5 shows a double-logarithmic plot ofα-relaxation times againstT − Tc, using the
critical temperatures of equation (2). For all pressures there is a temperature interval where the
data points lie on a straight line in accord with equation (7). Deviations from the power-law
behaviour are visible both at small and large distances from the critical point. The deviations
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Figure 5. The temperature behaviour of different relaxation times, measured along the isobars
p = 0.5 (a),p = 1.0 (b) andp = 2.0 (c). In the plots,τq andτE2 are theα-relaxation times of
the incoherent dynamic structure factor at different wavenumbers and the dynamic orientational
correlation of the end-to-end vector (second Legendre polynomial), respectively. The values ofTc
are listed in table 2. The solid lines are power-law fits, including the largest possible number of
temperatures. Forp = 1, the fit forq = 6.9 usesγ = 2.09, i.e., theγ -value resulting from an
analysis of theβ-relaxation [39].

for largeT − Tc are expected because equation (7) is an asymptotic expansion which is only
valid if the reduced distance toTc, i.e., (T − Tc)/Tc, is small. The upper bounds for the
validity of equation (7) are approximately 0.7 (p = 0.5), 1.2 (p = 1) and 0.6 (p = 2),
which are comparable to the results from experiments [13,15] and other simulations [20–24].
However, these upper bounds strongly depend on the quantity under consideration. Whereas
deviations are very pronounced for the smallest length scale (q = 9.5), equation (7) provides
a good description at all except perhaps the lowest temperatures for the end-to-end-distance
orientational autocorrelation function.

On the other hand, the deviations from the idealized power law at low temperatures could
be attributed to the ergodicity-restoring thermally activated processes mentioned above. Close
to the dynamical critical temperature, these processes start to contribute significantly to the
relaxation dynamics of the system, and therefore the actual relaxation times can be smaller than
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the predictions of idealized MCT. This behaviour has been discussed in experimental studies,
e.g. [13, 15], and simulation studies, e.g. [19, 22, 23]. Therefore, in practical applications of
equation (7) one faces the problem that its range of validity is limited from below and above,
and that it additionally depends on the quantity under consideration.
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Figure 6. The ratio of differentα-relax-
ation times as measured along the isobar
p = 1.0. As can be seen, even close to the
critical temperature (Tc = 0.45) the ratio
changes by almost a factor of two.

Furthermore, equation (7) implies that in the temperature regime where the idealized MCT
is applicable, the ratio of two differentα-relaxation times should be independent of temperature.
As demonstrated in figure 6, this is not the case, even in the regime where theβ-analysis could
be done, i.e., forT−Tc 6 0.07 [39]. The ratio between different relaxation times can change by
almost a factor of two, and the effect is stronger forq = 9.5 than forq = 6.9 (the first minimum
and maximum of the static structure factor, respectively). Note that we obtain the same result
when applying a different definition of theα-relaxation time which includes the nonergodicity
parameterf sc

q , i.e.,φs
q(τq) = e−1f sc

q . However, it is not clear whether this finding is a strong
contradiction to MCT, because we have eliminated the dominant temperature dependence,
given by equation (7), when dividing two relaxation times. Since we are considering a
temperature range that is close, but not very close, toTc, and equation (7) is, strictly speaking,
only asymptotically valid, one could expect a smooth temperature dependence of the prefactors.
Such a conclusion can also be drawn from reference [16], in which the MCT equations for
a model of a colloidal suspension are solved numerically and compared with the asymptotic
results. There, it is found that the ratio of two relaxation times becomes constant only very
close to the critical point, although equation (7) is already followed for larger distance to the
critical volume fraction (see figure 7 of reference [16]). Interestingly, figure 6 shows that the
ratio is not a monotonic function and exhibits a maximum approximately at the beginning of
the temperature interval in which we can apply ideal MCT to describe theα-relaxation time.
It seems as if at this temperature a change in the dynamics of the system occurs.

This problem is also reflected in figure 7 which shows the results forγ when fitting
equation (7) to theα-relaxation time ofφs

q(t) atp = 1. The critical temperature was kept fixed
(Tc = 0.45) in the fits, and the maximum possible number of temperatures were taken into
account to determineγ . It is interesting to note that theγ -values, determined from figure 5
for the different pressures, agree with one another within the error margins, so the following
discussion is not specific top = 1. Figure 7 shows that the fit procedure yields a decrease
of γ with decreasingq, but theγ -values are distributed around the result of theβ-relaxation
analysis,γ = 2.09 [39]. Alternatively, one can keep the exponentγ = 2.09 constant and
adjust the critical temperature,Tc [39]. Then the critical temperatures forq > 3 coincide,
within the error bars, with the value obtained from theβ-analysis. However, the diffusion
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Figure 7. The variation ofγ (p = 1.0)
with the magnitudeq of the wave-vector
when fitting theα-relaxation time ofφs

q (t)

with equation (7) while keeping the critical
temperature fixed (Tc = 0.45).

coefficient of a chain yields a value ofTc which is significantly lower. Physically, both types
of analysis suggest that, going fromTc to higher temperatures, the melt has a stronger tendency
to liquify on short than on the long length scales. Such a behaviour is not unique to our polymer
model, but it was also found in other simulations [20,22].

4. Testing of the thermodynamic path independence

In order to verify the prediction of thermodynamic path independence, we estimated the density
of the melt at the critical temperature (Tc = 0.45) of the isobarp = 1. The density isρ = 1.042.
Then we performed a number of simulations in theNVT -ensemble for the appropriate isochor
(schematically, this is illustrated in figure 4), and again calculated various dynamic correlation
functions at the simulation temperatures (see table 1).
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Figure 8. Dynamic correlation of the
end-to-end-vector orientation (the second
Legendre polynomial), as measured at
constant density along the thermodynamic
pathρ = 1.042. Temperature decreases
from right to left, as specified in table 1.

The qualitative behaviour of the dynamical correlation functions along this isochor does not
differ from the behaviour observed for the various isobars, discussed in the preceding section.
As can be seen in figure 8 and figure 9, which show as an example the dynamic correlation of the
end-to-end-vector orientation, we find again that at lower temperatures a two-step relaxation
occurs (which cannot be seen on the scale of the figures due to the large plateau value), that
the relaxation times show a steep increase and that, at least for the lower temperatures, the
time–temperature superposition principle holds. This could have been expected, since earlier
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simulations of the model in theNVT -ensemble had also shown such a behaviour [26]. It is
interesting to note, however, that, compared to the appropriate isobar, the two-step relaxation
process can now be already observed at higher temperatures and that for the temperatures
studied theα-relaxation time is almost one order of magnitude larger.
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represents a fit with equation (7).

Once again it is possible to find a temperature region where the behaviour of theα-
relaxation times, extracted from the different dynamic correlation functions, can be described
by equation (7). This is illustrated in figure 10, where we show the temperature dependence
of various correlation times, as measured in theNVT -ensemble, plotted in such a way that
the applicability of the MCT prediction is clearly demonstrated. Qualitatively, we find the
same features as discussed before for the isobars. There are deviations from linearity at large
temperatures; the deviations are more pronounced for the shortest length scales, but still the
fits yield very similar values for the critical temperature, which can be combined to

Tc(ρ = 1.042) = 0.445± 0.010. (8)

Within our error bars, this value coincides with the dynamical critical temperature obtained
for the isobarp = 1.0. For theNVT -simulation the error bar is larger, since we were not
able to equilibrate the melt as close to the dynamical critical temperature as was possible in
theNpT -simulation. Note that the lowest temperature in figure 5(b) isT = 0.46, whereas it
is T = 0.5 in figure 10. This difference is caused by the larger relaxation time in theNVT -
ensemble (due to the higher density/pressure), at a specific temperature, in comparison to the
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NpT -ensemble. Therefore the estimate becomes less accurate, but we can still conclude that
the dynamical critical temperature of ideal MCT is indeed independent of the thermodynamic
path chosen.

τE1 τE2 τB2 τq=3.0 τq=6.9 τq=9.5

1.0

1.5

2.0

2.5

3.0

γ

isobar
isochor

γMCT=2.09

Figure 11. Values ofγ determined from the temperature dependence of various correlation times,
for two different thermodynamic paths, which yield the same critical temperature. On the abscissa,
the relaxation times are quoted, from whichγ was determined. For both the isobaric and the isochor
path the error margins are about 10%, which is rather large, sinceγ is very sensitive to variation
of the critical temperature. Within the error bars,γ does not depend on the thermodynamic path.

Finally, we want to verify that the exponentγ is independent of the thermodynamic path
as well. As already discussed in section 3, the exponentγ shows a pronounced dependence on
the dynamic correlation function considered, if one works with the same critical temperature
for all quantities and extends the fit interval as much as possible. The same dependence is also
found for the isochor, but the results coincide within the error bars with those of the isobars,
as figure 11 illustrates. Therefore,γ is in fact independent of which path is chosen, which
demonstrates the thermodynamic character of the dynamical critical point in mode-coupling
theory.

5. Conclusions

In this paper we have presented results of a large-scale molecular dynamics simulation for a
supercooled polymer melt. Our model is a coarse-grained bead–spring model with nonlinear
springs connecting monomers along a chain and Lennard-Jones interactions between all
monomers. By including competing length scales in the model we prevented the melt from
crystallizing at lower temperatures.

The present study concentrated on the influence of pressure on theα-relaxation behaviour
of the melt. Upon cooling we see a steep increase of theα-relaxation time, and all dynamic
correlation functions show a two-step relaxation. By comparing data for different isobars,
we found that our system exhibits not only time–temperature superposition aboveTc, but
time–temperature–pressure superposition as well.

For all pressures investigated, it has been possible to locate a temperature interval where
the increase of theα-relaxation times could be described by idealized MCT. Therefore we
have been able to investigate the dependence of the dynamical critical temperature of MCT
on pressure and to give a sketch of the critical line in the(p, T ) plane. However, whereas the
critical temperatures determined from different quantities probing both small and large length
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scales of the melt coincide within the error bars, the approach towardsTc, i.e., the exponentγ ,
is very sensitive to the precise choice ofTc in the fit, and depends on the quantity considered.
When fixingTc, we find that theα-relaxation times ofφs

q(t) for q-values distributed around
the maximum of the structure factor are compatible with the result of theβ-analysis [39].
Deviations occur for much smaller and largerq-values. The deviations at largeq can be
explained by the sensitivity ofγ to Tc, since fixingγ at the value of theβ-analysis instead of
Tc yields estimates forTc that are compatible with the results of theβ-analysis [39]. However,
such an alternative fit procedure does not remove the discrepancies found on the largest length
scale. On these length scales,γ is smaller than expected from theβ-analysis. Similar deviations
are also observed on smaller length scales, if the critical point is approached very closely. They
can be rationalized, within the theoretical framework of MCT, by ergodicity-restoring processes
which compete with and finally dominate over the cage effect treated by the idealized theory,
if T 6 Tc. To what extent the predictions of the idealized theory are observable therefore
depends not only on the quantity under consideration, which was also pointed out in recent
theoretical work [16, 57], but also on the distance to the critical point. If one is too close,
ergodicity-restoring processes interfere, and if the temperature is too large, the asymptotic
regime, where the formulae of the idealized MCT are expected to hold, is departed from.

By performing simulations along an isochor which had the same intersection point with
the critical line as one of the isobars, we have been able to verify that, within the error margin,
the dynamical critical temperature of MCT is indeed independent of which thermodynamic
path one chooses for the cooling. Furthermore, we have shown that the exponentγ does not
depend on the choice of thermodynamic path either, within the caveats explained in the last
paragraph.

In summary, one can therefore say that the idealized theory is a good starting point for a
quantitative description of the dynamics aboveTc, and seems to capture the essential physics,
not only for simple liquids, but also for the polymer model. Why this could be the case is
further discussed in reference [39].
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[2] Jäckle J 1987Phil. Mag.B 56113
[3] Zallen R 1983The Physics of Amorphous Solids(New York: Wiley)
[4] McKenna G B 1989Comprehensive Polymer Sciencevol II, ed C Booth and C Price (New York: Pergamon)

pp 311–62
[5] Götze W 1993Phase Transitions and Relaxations in Systems with Competing Energy Scales (NATO ASI Series

C, vol 415)ed T Riste and D Sherrington (Dordrecht: Kluwer)
[6] Cohen M H and Turnbull D 1959J. Chem. Phys.311164
[7] Cohen M H and Turnbull D 1961J. Chem. Phys.34120
[8] Cohen M H and Turnbull D 1970J. Chem. Phys.523038
[9] Gibbs J H and Di Marzio E A 1958J. Chem. Phys.28373

[10] Gibbs J H and Di Marzio E A 1958J. Chem. Phys.28807
[11] Adam G and Gibbs J H 1965J. Chem. Phys.43139
[12] Di Marzio E A and Young A J M1997J. Res. NIST102135



2192 C Bennemann et al

[13] Li G, Du W M, Chen X K, Tao N J and Cummins H Z 1992Phys. Rev.A 453867
Cummins H Z, Du W M, Fuchs M, G̈otze W, Hildebrand S, Latz A, Li G and Tao N J 1993Phys. Rev.E 474223

[14] van Megen W and Underwood S M 1993Phys. Rev.E 47248
van Megen W and Underwood S M 1994Phys. Rev.E 494206
van Megen W, Mortensen T C, Williams S R and M̈uller J 1998Phys. Rev.E 586073

[15] Cummins H Z, Li G, Du W M and Hernandez J 1994PhysicaA 204169
[16] Franosch T, G̈otze W, Mayr M R and Singh A P 1997Phys. Rev.E 553183
[17] Tölle A, Schober H, Wuttke J and Fujara F 1997Phys. Rev.E 56809
[18] Baschnagel J 1994Phys. Rev.B 49135
[19] Baschnagel J and Fuchs M 1995J. Phys.: Condens. Matter7 6761
[20] Kob W and Andersen H C 1995Phys. Rev.E 514626
[21] Kob W and Andersen H C 1995Phys. Rev.E 524134
[22] Kämmerer S, Kob W and Schilling R 1997Phys. Rev.E 565450
[23] Kämmerer S, Kob W and Schilling R 1998Phys. Rev.E 582131
[24] Kämmerer S, Kob W and Schilling R 1998Phys. Rev.E 582141
[25] Sciortino F, Fabbian L, Chen S-H and Tartaglia P 1997Phys. Rev.E 565397
[26] Bennemann C, Paul W, Binder K and Dünweg B 1998Phys. Rev.E 57843
[27] Yip S and Nelson P (ed) 1995Transport Theory Stat. Phys.24Nos 6–8 (Theme Issues on mode-coupling theory)
[28] Bengtzelius U, G̈otze W and Sj̈olander A 1984J. Phys. C: Solid State Phys.175915
[29] Götze W 1990Liquids, Freezing and Glass Transitionpart 1, ed J-P Hansen, D Levesque and J Zinn-Justin

(Amsterdam: North-Holland) pp 287–503
[30] Götze W and Sj̈ogren L 1992Rep. Prog. Phys.55241
[31] Götze W and Sj̈ogren L 1995Transport Theory Stat. Phys.24801
[32] Schilling R 1994Disorder Effects on Relaxational Processesed R Richert and A Blumen (Berlin: Springer)
[33] Kob W 1997Experimental and Theoretical Approaches to Supercooled Liquids: Advances and Novel Appl-

icationed J T Fourkas, D Kivelson, U Mohanty and K A Nelson (Washington, DC: ACS Books)
[34] Bengtzelius U 1986Phys. Rev.A 333433
[35] Li G, King H E, Oliver W F, Herbst C A and Cummins H Z 1995Phys. Rev. Lett.742280
[36] Tölle A 1997Doctoral ThesisDortmund University
[37] Tölle A, Schober H, Wuttke J, Randl O G and Fujara F 1998Phys. Rev. Lett.802374
[38] Angell C A and Sichina W 1976Ann. NY Acad. Sci.27953
[39] Bennemann C, Baschnagel J and Paul W 1999Eur. Phys. J.B submitted

(Bennemann C, Baschnagel J and Paul W 1998 Molecular dynamics simulation of a glassy polymer melt:
incoherent scattering functionPreprintcond-mat/9809335)

[40] Kremer K and Grest G S 1990J. Chem. Phys.925057
[41] Dünweg B, Grest G S and Kremer K 1997Conf. Proc. of the IMA Workshop (Minneapolis, MN, May 1996)

(Berlin: Springer)
[42] Kopf A, Dünweg B and Paul W 1997J. Chem. Phys.1076945
[43] Wolfgardt M, Baschnagel J, Paul W and Binder K 1996Phys. Rev.E 541535
[44] Wolfgardt M and Binder K 1996Macromol. Theory Simul.5 699
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